Phys111-Functions_&_Differentiation

Table of Contents

  1. Asymptotic Formulas at $x\to 0$
  2. List of Derivatives
    1. Squeeze Theorem
    2. L’Hopitals Rule
    3. Special Limit
    4. Leibniz Formula
    5. Second Order Parametric Differentiation
    6. Inverse Function and its Derivative
    7. Partial Differential Chain Rule
    8. Tangential Planes
  3. Total Differential
    1. Local Extremum
    2. Implicit Differentiation
  4. Coordinate Systems
    1. Polar
    2. Cylindrical
    3. Spherical
  5. Vectors
    1. Products
      1. Dot Product
      2. Cross Product
  6. Directional Derivative
  7. Lagrange Multipliers

Asymptotic Formulas at $x\to 0$

$$\begin{align}&\sin{x}=x+\mathcal{O}(x),\\&\cos{x}=1-\frac{1}{2}x^2+\mathcal{O}(x^2),\\&a^x=1+x\ln{a}+\mathcal{O}(x)(a\gt 0),\\&\ln{(1+x)}=x+\mathcal{O}(x),\\&e^x=1+x+\mathcal{O}(x),\\&(1+x)^a=1+ax+\mathcal{O}(x),\\&\tan{x}=x+\mathcal{O}(x),\\&\sinh{x}=x+\mathcal{O}(x),\\&\cosh{x}=1+\frac{x^2}{2}+\mathcal{O}(x^2),\\&\tanh{x}=x+\mathcal{O}(x)\end{align}$$

List of Derivatives

$$\begin{array}{l | l} \textbf{Easier}&\textbf{Harder}\\ (x^\alpha)'=\alpha x^{\alpha-1}, \forall\alpha & (\arcsin x)' = \frac{1}{\sqrt{1-x^2}},-1\lt x\lt 1\\ (\sin{x})’=\cos{x} & (\arccos{x})'=-\frac{1}{\sqrt{1-x^2}},(-1\lt x\lt 1)\\ (\cos{x})’=-\sin{x} & (\arctan{x})'=\frac{1}{1+x^2}\\ (\log_a{x})’=\frac{1}{x\ln{a}} & (\textrm{arccot}\;x)'=-\frac{1}{1+x^2}\\ (\ln{x})’=\frac{1}{x}(x\gt 0) & (\sinh{x})’=\cosh{x}\\ (a^x)’=a^x\ln{a} & (\cosh{x})’=\sinh{x}\\ (e^x)’=e^x & (\tanh{x})’=\frac{1}{(\cosh{x})^2}\\ (\tan{x})’= \sec^2x,(x\neq \frac{\pi}{2}+\pi n,n\in \mathbb{Z}) & (\coth{x})’=-\frac{1}{(\sinh{x})^2}(x\neq 0)\\ (\cot{x})’=-\csc^2x,(x\neq\pi n,n\in \mathbb{Z}) & \end{array}$$

Squeeze Theorem

If $f(x)\leq g(x)\leq h(x)$ and $\lim_{x\to 0}f(x)=L$ and $\lim_{x\to 0}h(x)=L$, we can deduce $\lim_{x\to 0}g(x)=L$

L’Hopitals Rule

If a limit produces indeterminacies: $$ \lim_{x\to a}\frac{\alpha(x)}{\beta(x)}= \lim_{x\to a}\frac{\alpha'(x)}{\beta'(x)} $$ It will work for the following indeterminacies: $$ \frac{0}{0},\;\;\frac{\infty}{\infty},\;\;0\times\infty,\;\;1^\infty,\;\;0^0,\;\;\infty^0,\;\;\infty-\infty $$

Special Limit

To manipulate the limit $\lim_{r \to \infty} \left(1 + \frac{1}{r^3}\right)^{3r^3}$ to use the special limit $\lim_{r \to \infty} \left(1 + \frac{1}{r}\right)^r = e$, we proceed as follows: Start with the original limit: $$ \lim_{r \to \infty} \left( 1 + \frac{1}{r^3} \right)^{3r^3} $$ Next, let $x = r^3$. As $r \to \infty$, $x \to \infty$ as well. Rewrite the expression in terms of $x$: $$ \left( 1 + \frac{1}{x} \right)^{3x} $$ Notice that the exponent $3r^3$ becomes $3x$. This can be expressed as: $$ \left[ \left( 1 + \frac{1}{x} \right)^x \right]^3 $$ We know from the special limit that: $$ \lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^x = e $$ Therefore, taking the limit as $x \to \infty$: $$ \left[ \left( 1 + \frac{1}{x} \right)^x \right]^3 \to e^3 $$ Thus, the limit simplifies to: $$ \lim_{r \to \infty} \left( 1 + \frac{1}{r^3} \right)^{3r^3} = e^3 $$ In conclusion, we have: $$ \boxed{e^3} $$ Personal note: this this trick means that we can use the identity with: $$ \lim_{r\to\infty}\left(1+x\right)^\frac{1}{x} $$

Leibniz Formula

$$ (uv)^{(n)}=\sum_{i=0}^nc^i_nu^{(i)}v^{(n-i)},\;\;\; c^i_n=\frac{n!}{i!(n-i)!} $$

Second Order Parametric Differentiation

$$ \frac{d^2y}{dx^2}=\frac{\frac{d}{dt}(\frac{dy/dt}{dx/dt})}{\frac{dx}{dt}} $$

Inverse Function and its Derivative

$$ (f^{-1}(y_0))'=\frac{1}{f'(x_0)}\implies (f^{-1}(x))'=\frac{1}{f'(f^{-1}(x))} $$

Partial Differential Chain Rule

For $z=f(u(x,y),v(x,y))$ $$ \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x}\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial y} $$

Tangential Planes

If a function $z=f(x,y)$ is differentiable at point $M_0(x_0,y_0$) of the function domain, then at point $N_0(x_0,y_0,f(x_0,y_0))$ there is a tangent plane to the surface $S$ defined by: $$ \frac{\partial z}{\partial x}(M_0)(x-x_0)+\frac{\partial z}{\partial y}(M_0)(y-y_0)-(z-f(x_0,y_0))=0 $$ Or for function $F(x,y,z)$: $$ \frac{\partial F}{\partial x} (x-x_0) + \frac{\partial F}{\partial y} (y-y_0) + \frac{\partial F}{\partial z} (z-z_0)=0 $$

Total Differential

For a differentiable function $f(x_1,x_2,...,x_m),$ we define the differentials $dx_1,dx_2,...,dx_m$ to be independent variables, that is, they can be given any values. Then the differential $df$, also called the total differential, is defined by $$ df=\frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}dx_2+...+\frac{\partial f}{\partial x_m}dx_m $$

Local Extremum

For $u=f(M)$ at a point $M_0(x_1^0,...,x^0_m)$ and partial derivatives with respect to $x_k$, there is a stationary point if: $$ \frac{\partial u}{\partial x_k}(M_0)=0 $$ Furthermore, the following expression yields more information about the function. $$ R=\frac{\partial^2 u}{\partial x^2}(M_0)\cdot\frac{\partial^2 u}{\partial y^2}(M_0)-(\frac{\partial^2u}{\partial x\partial y}(M_0))^2 $$

Implicit Differentiation

If $F(x,y)=0$ defines y implicitly as a function of x, then $$ \frac{dy}{dx}=-\frac{F_x}{F_y}, \textrm{ if } F_y\neq0 $$ $$ f''(x)=\frac{d}{dx}\begin{bmatrix}-\frac{F_x(x,f(x))}{F_y(x,f(x))}\end{bmatrix} $$

Coordinate Systems

Polar

The most fun. Related to cartesian coordinates: $$ x=r\cos{\theta},\;\;\;\;\;y=r\sin{\theta} $$

Cylindrical

Polar, along with a height, $z$. $$ x=r\cos{\theta},\;\;\;\;\;y=r\sin{\theta}\;\;\;\;\;z=z $$

Spherical

Two sets of angles and a radius. $$ x=r\cos{\theta}\sin{\phi},\;\;\;\;\;y=r\sin{\theta}\sin{\phi}\;\;\;\;\;z=r\cos{\phi} $$

Vectors

Products

Dot Product

The one you’re probably going to need more. $$ \mathbf{a}\cdot\mathbf{b}=|\mathbf{a}||\mathbf{b}|\cos{\phi} $$ Magnitude $|\mathbf{a}|$: $$|\mathbf{a}|=\sqrt{\mathbf{a}\cdot \mathbf{a}}$$ Components: $$ (Q\mathbf{\hat{i}}+R\mathbf{\hat{j}})\cdot(S\mathbf{\hat{i}}+T\mathbf{\hat{j}})=QS+TR $$

Cross Product

More complicated, and orthogonal. Use right hand rule: CAB Note: For vectors, $a\times b = -b\times a$ and $a^2=0$. $$ \mathbf{c}=\mathbf{a}\times \mathbf{b}\implies|\mathbf{c}|=|\mathbf{a}||\mathbf{b}|\sin{\phi} $$ Components: $$ \mathbf{a}\times \mathbf{b}=(a_2b_3-a_3b_2)i-(a_3b_1-a_1b_3)j+(a_1b_2-a_2b_1)k $$ Is possible to work it out by expanding the brackets and remembering $i^2,j^2,k^2=0$, and the vector circle. i→j→k→i.

Directional Derivative

A unit vector exists for any non-zero vector a and has the length equal to 1. In Cartesian Coordinates, $a=(P(x,y,z), Q(x,y,z),R(x,y,z))$. $u=\frac{1}{\sqrt{P^2+Q^2+R^2}}(P,Q,R) = (\cos\alpha, \cos\beta, \cos\gamma)$, where $\alpha,\beta,\gamma$ are the angles between vector a and the corresponding axes. $$ \nabla=\frac{\partial}{\partial x}i+\frac{\partial}{\partial y}j+\frac{\partial}{\partial z}k $$ $$ \nabla f=\frac{\partial f}{\partial x}i+\frac{\partial f}{\partial y}j+\frac{\partial f}{\partial z}k $$ So we can therefore derive that the directional derivative $(\frac{\partial f}{\partial \mathbf{u}})$ is: $$ \frac{\partial f}{\partial \mathbf{u}}=\nabla f\cdot \mathbf{u} $$ Which equals: $$ \frac{\partial f}{\partial \mathbf{u}}(M)=|\nabla f|\cos\phi $$

Lagrange Multipliers

The Lagrange multiplier technique lets you find the maximum or minimum of a multivariable function when there is some constraint on the input values you are allowed to use. $$ \phi(M)=f(M)+\lambda_1F_1(M)+...+\lambda_kF_k(M) $$ Note: See Phys113-Series and Differential Equations, towards the end for more on this.